1.读取数据
2.查看内存占用情况
查看各种数据类型内存占用情况:
for dtype in ['float64','object','int64']: selected_dtype = gl.select_dtypes(include=[dtype]) mean_usage_b = selected_dtype.memory_usage(deep=True).mean() mean_usage_mb = mean_usage_b / 1024 ** 2 print("Average memory usage for {} columns: {:03.2f} MB".format(dtype,mean_usage_mb))
Average memory usage for float64 columns: 1.29 MB Average memory usage for object columns: 9.51 MB Average memory usage for int64 columns: 1.12 MB
3.查看各种数据类型可取值的范围
import numpy as np int_types = ["uint8", "int8", "int16","int32","int64"] for it in int_types: print(np.iinfo(it))
4.计算各种数据类型的内存占用量
def mem_usage(pandas_obj): if isinstance(pandas_obj,pd.DataFrame): usage_b = pandas_obj.memory_usage(deep=True).sum() else: # we assume if not a df it's a series usage_b = pandas_obj.memory_usage(deep=True) usage_mb = usage_b / 1024 ** 2 # convert bytes to megabytes return "{:03.2f} MB".format(usage_mb) gl_int = gl.select_dtypes(include=['int64']) # http://pandas.pydata.org/pandas-docs/stable/generated/pandas.to_numeric.html converted_int = gl_int.apply(pd.to_numeric,downcast='unsigned') print(mem_usage(gl_int)) print(mem_usage(converted_int))
7.87 MB 1.48 MB
将dataframe进行数据转换
optimized_gl = gl.copy() optimized_gl[converted_int.columns] = converted_int optimized_gl[converted_float.columns] = converted_float print(mem_usage(gl)) print(mem_usage(optimized_gl))
860.50 MB 803.61 MB
将星期数据进行编码
将整形数据转换为无符号整形
对重复数据<0.5的数据进行编码
converted_obj = pd.DataFrame() for col in gl_obj.columns: num_unique_values = len(gl_obj[col].unique()) num_total_values = len(gl_obj[col]) if num_unique_values / num_total_values < 0.5: converted_obj.loc[:,col] = gl_obj[col].astype('category') else: converted_obj.loc[:,col] = gl_obj[col]
此时的内存:
日期数据转换